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1. Introduction 

Dielectric materials with charged defects exhibit a variety of physical phenomena whose origins 
are not fully understood.  Early continuum theories (Devonshire, 1954; Toupin, 1956) of the 
electromechanical behavior of dielectric media have been set forth, though these do not consider 
defects explicitly.  However, defects such as vacancies have been the focus of considerable study 
(Lifshitz, 1963), particularly with regards to crystalline ceramics of current interest to the U.S. 
Army Research Laboratory.   

The unique aspect of the present study is consideration of electrically charged, as opposed to 
neutral, vacancies in dielectric solids.  Defect concentrations and excess charges in ferroic 
ceramics may be adjusted during processing via heat treatments and/or addition of doping 
chemicals (Cole et al., 2003).  Charged point defects have been identified as a major factor 
affecting the reliability of ferroelectric devices (Damjanovic, 1998), including gate dielectric 
semiconductors, particularly those of thin film geometry (Buchanan, 1999).   

Here, a general modeling framework is constructed for elastic dielectric semiconductors with 
mobile charged point vacancies.  This framework combines the physics of continuum elasticity, 
electrostatics, mass diffusion, and charged defect kinetics.  Changes in surface morphology due 
to the boundary flux of charged vacancies are captured, extending a previous theory of one of the 
co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). 

The theory is implemented numerically in a finite difference code (Hoffman, 1992) enabling 
simultaneous solution of the elliptic equations of electrostatics of dielectrics and the transient 
parabolic equations of charged diffusion.  The analysis is limited to a single spatial dimension.  
The time duration of the problem is decomposed into a sequence of steps.  A second-order 
accurate fully implicit scheme is invoked to solve Maxwell's equations in each step, while a fully 
explicit scheme is used to integrate the transient vacancy concentration.  The spatial domain and 
grid spacing are updated when the surface flux of concentration is nonzero, as vacancies exiting 
the domain influence its instantaneous dimensions.   

Documentation is presented for the computer implementation.  Included here are descriptions of 
the source code structure, user instructions, and representative input files for the software, the 
latter specifically for analysis of barium strontium titanate (Ba1-xSrxTiO3) (BST) thin films 
containing charged oxygen vacancies.  The source code is given in the appendix. 

In the notation that follows, the Einstein summation convention is used on repeated lower-case 
indices, unless indicated otherwise.  Cartesian spatial coordinate indices span three dimensions 
and are written in Roman font, while curvilinear surface coordinate indices span two dimensions 
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and are written in Greek font.  Subscripted commas denote covariant differentiation.  Capitalized 
subscripts are often used in physical constants and are not summed.  In the description of 
numerical methods, subscripts are often used for node numbers, and superscripts for time 
increments. 

2. Theory 

The governing equations, thermodynamic framework, and constitutive relations are first 
presented, with limited derivations, in three-dimensional (3-D) form in section 2.1.  The one-
dimensional (1-D) equations that are solved numerically follow in section 2.2.   

2.1 Model Framework 

The local electrostatic behavior of dielectric continua is dictated by Maxwell's equations 
(Stratton, 1941): 

 , ˆi
iD ρ= ,  (1) 

 ,i iE φ= − , (2) 

and 
 0

i i iD E Pε= + , (3) 

where D  is the electric displacement, ρ̂  is the charge density, E  is the electric field, φ  is the 
electrostatic potential, and 0ε  is the permittivity of free space.  The polarization vector P is 
defined only within the material and vanishes in free space.  Local mechanical equilibrium and 
mass conservation are ensured by 

 , 0ij
jσ =  (4) 

and 
 , 0i

iuρ ρ+ = , (5) 

where σ  is the symmetric Cauchy stress, ρ  is the mass density of the deformed solid with 
vacancies, and u  is the displacement, which itself encompasses expansion or contraction due to 
vacancies within the bulk material.  Small displacements are assumed henceforth in the present 
theory.  The balance of energy and the dissipation inequality may be written in global rate form 
as 

 0WΦ Ω= − ≥ ,  (6) 

with Φ  the dissipation, W  the rate of external work, and Ω  the system energy.  For a dielectric 
solid containing mobile charged vacancies, the external work and energy of the system are  
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 ˆˆ i i
i i

dW ds t u ds Q n ds
dt

σφ µ= + −∫ ∫ ∫  (7) 

and 

 ( ) ( ) 2

0 , ˆ1/ 2 i
d dU dv dv ds
dt dt

Ω ρ θη ε φ σφ= − + +∫ ∫ ∫ , (8) 

where s and v are the surface and volume of the system with unit normal n, σ̂  is the surface 
charge density, t̂  is the traction vector, µ  is the chemical potential for vacancy diffusion, Q is 
the vacancy flux, U  is the internal energy per unit mass of the substance, and γ  is the surface 
energy density.  Heat conduction is not considered explicitly here, as is evident from equations 
6–8.  The Helmholtz free energy ψ , specific entropy η , and temperature θ  are related by the 
usual thermodynamic relationship 

 Uψ ηθ= − . (9) 

The following constitutive assumptions are made regarding the free energy and charge density: 

 ( ), , , ,i
i ju Pψ ψ θ ξ= , (10) 

and 
 ˆ ezρ ξ= , (11) 

where ξ  is the number of vacancies per unit volume.  Assumption (equation 10) suggests a free 
energy dependence on mechanical strain, polarization, temperature, and vacancy concentration.  
Equation 11 denotes that the charge density is proportionate to the vacancy concentration, with e 
and z the charge of an electron and the valence contribution of each defect, respectively.  
Substituting equations 9–11 into equation 6 and making use of the balance laws in equations 1–5 
and the divergence theorem, and restricting 0φ =  on s, the following thermodynamically 
admissible bulk constitutive relations may be derived: 

 i
iE Pρ ψ= ∂ ∂ , (12) 

 ,
ij

i juσ ρ ψ= ∂ ∂ , (13) 

 η ψ θ= −∂ ∂ , (14) 

 ,
i
iQξ = − , (15) 

 ,
i ij

jQ d µ= − , (16) 

and 
 ezµ ρ ψ ξ φ= ∂ ∂ + , (17) 
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where the diffusivity tensor d is symmetric and positive definite.  Let χ αξ=  denote the volume 
fraction of vacancies, with α  is a scalar conversion factor.  Mass conservation requires that  

 ( ) ( ),1 i
ia Q n qα

αχ α− = − + , (18) 

where a  is the surface velocity of the substance with unit normal n and q is the flux tangential to 
the surface of charged vacancies.  Conservation of mechanical work leads to 

 ,
ˆi

i j jt u nρ ψ= ∂ ∂ . (19) 

By requiring that the volumetric energy of the system Ω  remain constant or decrease with time 
in the absence of mechanical working due to external stresses, the following relations for the  
in-plane and normal surface fluxes are formulated: 

 ( ) ( )( ),
ˆ / 1q Aα αβ

β
ρψ ρφχ χ= + − , (20) 

and 
 ( ) ( )( )( )1ˆ1 1i

iQ n ezχ β ρψ ρφ χ ρ ψ χ α φ−− = + + − ∂ ∂ + , (21) 

where A is the symmetric positive definite surface diffusivity tensor and β  is a positive scalar 
characterizing the resistance of the surface to penetration by vacancies.  Implicit in equations 4, 
13, and 19 is the vanishing of Maxwell's stress tensor (Toupin, 1956), meaning that contributions 
from terms of second order in the electric field and polarization are neglected in the mechanical 
equilibrium equations. 

The continuum theory is applied here to describe linear elastic dielectric solids.  A specific form 
of the free energy density is thus postulated as 

 ( ) ( ) ( ) ( ) ( ), ,1/ 2 1/ 2 ,ijkl i j
iji k j lu u P Pρψ λ ϕ ξ θ= + + , (22) 

where  and λ  are linear-elastic moduli and inverse dielectric susceptibility, respectively, and 
symmetrized indices are in parentheses.  Presently, we address only the response of the material 
in its paraelectric state, at temperatures above the Curie point.  Thus, phase transformations, 
piezoelectricity, pyroelectricity, and spontaneous polarization are not considered.  From equation 
22, bulk thermodynamic relations in equations 12, 13, and 3 reduce to 

 ( ),
ij ijkl

k luσ = , (23) 

 j
i ijE Pλ= , (24) 

and 
 0

i ij
R jD Eε ε= , (25) 
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with 1 1
0

ij ij ij
Rε δ ε λ− −= +  the relative permittivity (i.e., real dielectric constant).  The vacancy and 

temperature-dependent contribution ϕ  is assumed here to follow the universal relation for the 
chemical potential of an ideal mixture (Fried et al., 1977), most relevant for noninteracting 
species and small vacancy concentrations: 

 ( )( )0 lnA T A BN N G N k vϕ θ θν= + . (26) 

In equation 26, AN  is Avagadro’s number, Bk  is Boltzmann’s constant, 1/TN α=  is the number 
of atomic sites per unit volume, v is the mole fraction of vacancies, and 0G  is the bulk Gibbs free 
energy of unstressed, defect-free substance.  As implemented here, we assume simply that 

 ( ) ( )0 ˆ ˆG cθ θ η θ= −⎡ ⎤⎣ ⎦ , (27) 

with specific heat ĉ  and specific entropy η̂ .  Upon application of equation 26, the kinetic 
equation for bulk diffusion then follows directly from equation 16 as   

 ( ),
i ij

B j jQ d k ezEθχ χ= − − . (28) 

2.2 One-Dimensional Model 

The physical system analyzed is a substance of length (i.e., thickness) T  with applied bias 
voltage V, as shown in figure 1.  Alternatively to voltage boundary conditions, electric fields may 
be applied at the boundaries (not shown in figure 1).  No mechanical tractions are applied, and 
isotropic material properties are assumed ( ij ij

R Rε ε δ= , ij ijd dδ= ), thus rendering the analysis one 
dimensional in thickness direction x.  Correspondingly in this analysis, surface flux 0qα =  and 
surface tension 0τ = .  A constant temperature θ  is assumed.   
 

 

Figure 1.  One-dimensional problem domain. 

 

Under the preceding conditions, the governing electrostatic equations 1–3 reduce to 

 ( )2 2
0 0 ˆ/R RdD dx dE dx d dxε ε ε ε φ ρ= = − = .  (29) 

The vacancy evolution equations 28 and 15 become 
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 ( )( )BQ d k d dx ezEθ χ χ= − −  (30) 

and 
 ( )dQ dxχ α= − , (31) 

with the domain size evolving, from equation 18, as 

 ( ) ( )( ) ( ) ( )( )( )/ 1 0 / 1 0a Q T T Qα χ χ= − − − . (32) 

Spatial boundary conditions are applied as follows: 

 ( ) ( )ˆ ˆ0, , 0t t t L t= = , (33) 

 ( ) 00, t Vφ =    or   ( ) 00,E t E= , (34) 

 ( ), TT t Vφ =    or   ( ), TE T t E= , (35) 

 ( ) 00, tχ χ=    or    ( ) 00,Q t Q= , (36) 

and 
 ( ), TT tχ χ=   or   ( ), TQ T t Q= . (37) 

The boundary fluxes 0Q  and TQ  may be prescribed as constant values, or determined 
instantaneously from the model thermodynamics (equation 21): 

 ( ) ( )( )( )1ˆ1 1Q ezχ β ρψ ρφ χ ρ ψ χ α φ−− = − + + − ∂ ∂ + . (38) 

Initial conditions for the vacancy concentration and electrostatic charge density are applied as 

 ( ) ( ),0x xχ χ=  (39) 

and 
 ( ) ( )ˆ ,0x xρ ρ= , (40) 

where /ezρ χ α=  should be imposed for consistency with equation 11.   

Note from equations 30 and 31 that the electric field may act as a local source or sink for 
vacancies, implying that ions may be impinged within or released from the lattice due to 
electrostatic forces.  In some cases, it is convenient and realistic to impose an additional 
constraint that the total number of vacancies in the system remains constant, i.e., 

 00

T
dx Tχ χ=∫ , (41) 

where 0χ  is the initial average concentration. 
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3. Numerical Methods 

The time duration of the problem is decomposed into a series of steps.  For each time step, the 
electrostatic problem is solved, with the corresponding solution for the electric field used in the 
transient equations (equation 30) for updating the vacancy concentration.  In the following time 
step, this updated vacancy concentration is used to compute the local electric charge entering 
Maxwell’s equations (equation 29).  The analysis thus marches forward in time, with the 
numerical solutions of the equations of electrostatics and diffusion coupled in this manner.   

The 1-D spatial domain is discretized into 1n −  increments of equal length x∆ , with n the total 
number of nodes, as shown in figure 2. 

 

 

Figure 2.  Spatial discretization. 

3.1 Electrostatics 

A second-order accurate implicit scheme is used to solve Maxwell's static equations in each step.  
Within the domain 0 x T< < , equation 29 is written, to accuracy of order ( )2x∆ , using a finite 
difference approximation (Hoffman, 1992) for the second spatial derivative of φ : 

 ( )2
1 1 0ˆ2 /i i i i Rxφ φ φ ρ ε ε+ −− + = − ∆ , (42) 

where subscripts denote node numbers.  The solution of equation 42 for all nodes i is then 
written in matrix form as 

 [ ] [ ] [ ]1−=φ ρΑ , (43) 

where [ ]φ  is the n-dimensional solution vector of nodal electric potentials, [ ]Α  is the n n×  

coefficient matrix that is generally tridiagonal and sparse, and [ ]ρ  is an n-dimensional  vector 

that corresponds to the right hand side of equation 42.  In the solution procedure, the dimensions 
of [ ]φ , [ ]Α , and [ ]ρ  are reduced by one for each electrostatic potential boundary condition 

enforced a priori.  Once the electric potential is known, the electric field is then computed 
numerically as 
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 1 12 i i ixE φ φ+ −− ∆ = − . (44) 

The following second-order finite difference approximations are used at the boundaries (i = 1 
and i = n): 

 1 1 2 32 3 4xE φ φ φ− ∆ = − + − , (45) 

and 
 2 12 4 3n n n nxE φ φ φ− −− ∆ = − + . (46) 

3.2 Transient Diffusion 

A fully explicit scheme is used to integrate the transient vacancy concentration, with all 
necessary spatial derivatives obtained using a second-order accurate finite difference approach.  
The vacancy flux (equation 30) is written as follows, where subscripts denote node numbers: 

 ( )( )/i i iQ d d dx ezEρ ψ χ= − ∂ ∂ − , (47) 

where for nodes in the domain 0 x T< < , 

 lni B ikρ ψ χ θ χ∂ ∂ =  (48) 

and 
 ( ) ( )1 1/ ln ln / 2i B i id dx k xρ ψ χ θ χ χ+ −∂ ∂ = − ∆ . (49) 

Note that in equation 47, the electric field iE  is obtained from the electrostatic solution given by 
equations 44–46.  At the boundaries, the following approximations were used, analogous to 
equations 45 and 46: 

 ( ) ( )1 3 2 1/ ln 4 ln 3ln / 2Bd dx k xρ ψ χ θ χ χ χ∂ ∂ = − + − ∆ , (50) 

and 
 ( ) ( )2 1/ ln 4 ln 3ln / 2n B n n nd dx k xρ ψ χ θ χ χ χ− −∂ ∂ = − + ∆ . (51) 

The rate equation for concentration is approximated as follows for 0 x T< < : 

 ( )1 1 / 2i i iQ Q xχ α + −= − − ∆ , (52) 

and at the boundaries as 

 ( )1 3 2 14 3 / 2Q Q Q xχ α= − − + − ∆  (53) 

and 
 ( )2 14 3 / 2n n n nQ Q Q xχ α − −= − − + ∆ . (54) 

Application of concentration boundary conditions simply entails 0iχ = , while application of 
constant flux conditions at a boundary eliminates the need to solve (equation 47) at that 
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boundary.  When transient flux conditions (equation 38) are applied, the following 
approximation suffices: 

 ( ) ( )( )1ˆ1 1 lni i i i i i B i iQ k ezχ β ρψ ρ φ χ θ χ α φ−− = − + + − + , (55) 

where the free energy per unit volume is found from 

 ( ) ( )( )2
0 0/ 2 / ln / /i R i T A B i T i T AE N G N k N N Nρψ ε ε θ χ α χ α= + + . (56) 

Finally, the concentration is updated explicitly as 

 t t t
i i i tχ χ χ+∆ = + ∆ , (57) 

where t∆  is the time increment.   

The logarithmic form of the chemical potential, and flux equations 48–51, require that 0iχ > .  
This is achieved in practice by enforcing 

 min0 t t
i iiχ χ χ+∆→ ∨ ∈ < , (58) 

where t t
iχ +∆  is the projected updated concentration from equation 57 and 21

min 10χ −=  is a near-
negligible, default minimum concentration.  Optional global conservation condition (equation 
41) is imposed by rescaling equation 57: 

 ( ) ( )
1

0
1

1 n
t t t t
i i i i i

i

nT t x t
n

χ χ χ χ χ χ
−

+∆

=

−⎛ ⎞= + ∆ ∆ + ∆⎜ ⎟
⎝ ⎠

∑ . (59) 

The domain size is updated from equation 32 as 

 ( ) ( )( )1 1/ 1 / 1n na Q Qα χ χ= − − − −  (60) 

and 
 ( ) ( )/ 1t tx T a t n+∆∆ = + ∆ − . (61) 

For the solution of equation 42 in the next time step, the updated charge concentration is found 
from equation 11: 

 ˆ /t t t t
i iezρ χ α+∆ +∆= . (62) 

A fixed time increment is used throughout the analysis, i.e., 

 max /t t m∆ = , (63) 

where maxt  and m are the total simulation time and number of time increments, respectively.  
Convergence and stability of the numerical solution dictate the practical choice of t∆  
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(Chapra and Canale, 1998).  Let /B RD dk θ ξ= , where Rξ  is a reference concentration per unit 
volume, on the order of the minimum local concentration in the domain.  Then one may write 

 ( )2 /t x DΛ∆ ≤ ∆ , (64) 

where 1/ 2Λ ≤  guarantees convergence and stability.  Setting  1/ 4Λ ≤  ensures that the solution 
will not oscillate, while the choice 1/ 6Λ =  has been shown, for the pure diffusion problem, to 
minimize truncation error (Carnahan et al., 1969).  A description of what effect the unique 
electric field term iezE  in equation 47 may have on stability and convergence is not presently 
available. 

4. Software Manual 

In what follows, the source code structure, input files, and output files are documented.  Note 
that for reference, the complete code is contained in the appendix. 

4.1 Code Structure 

The source code is written in the standard FORTRAN90 language.  It has been compiled with 
Portland Group's FORTRAN compiler (i.e., pgf90) (http://www.pgroup.com/) and executed on a  
64-bit Linux workstation.  Floating point values are represented in scientific double precision.  
This is a serial, as opposed to parallel, code.  The program permits solution of the elliptic 
differential equations of electrostatics and/or the parabolic differential equations for transient 
diffusion.  Standard SI units are used throughout.  The software enables all of the features 
described in section 3, as well as a few additional options offering additional user flexibility.  
The code consists of the following routines: 

• the main routine, 'semiconductor_1D', which controls the grid spacing, memory allocation, 
and time incrementation. 

• subroutine 'elliptic', which solves Maxwell's equations. 

• subroutine 'parabolic', which solves the transient diffusion equations. 

• subroutine 'chem_potential', which computes the local free energy and its gradient. 

• subroutine 'LU_decomp', which decomposes the [ ]Α  matrix in (43) to LU-form.  

• subroutine 'LU_backsub', which solves equation 43 using a back substitution technique. 

Figure 3 is a flowchart demonstrating execution of the code. 



 11

 

Figure 3.   Flowchart for code execution. 

4.2 Input  

Up to three input files are required.  The file read by the main routine, 'parameters.inp', is always 
required.  Its format is as follows: 

'parameters.inp' 
Line 1: problem type. Specify 'maxwell' to solve only the electrostatic equations, 'fick' to solve 
only the diffusion equations, or 'mixed' to solve the fully coupled electrostatic-diffusion 
problem 
Line 2: number of nodes n 
Line 3: solution end time maxt [s] 
Line 4: fixed time increment t∆ [s] 
Line 5: number of time steps in between each write to the output files, tn  
Line 6: domain thickness T [m] 
Line 7: temperature θ  [K] 
Line 8: relative dielectric permittivity ,0Rε  
Line 9: factor κ  enabling permittivity to depend on local electric field (Johnson, 1962):  

( ) 1/32
,0 1R R Eε ε κ

−
= +  

Line 10: diffusivity d  
Line 11: diffusivity d̂  for electrostatic contribution (set d̂ = d for consistency with equation 
47): 

( )( ) ˆ/i i iQ d d dx dezEρ ψ χ= − ∂ ∂ +  

Line 12: factor for conversion of concentration from [ppm] to [m–3], equal to 610 /α− [m–3] 
Line 13: factor for conversion of concentration from [ppm] to volume fraction, nominally 610−  
Line 14: valence contribution per vacancy, z 
Line 15: specific entropy η̂  [J/mol K] 
Line 16: specific heat capacity ĉ  [J/mol K] 
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The file 'electrostatic.inp' is read only if the problem type is 'maxwell' or 'mixed'.  Its format is 
specified as follows: 

'electrostatic.inp' 
Line 1: boundary condition at 0x = .  Use 'potential' to supply a voltage φ , or 'flux' to supply 
an electric field E 
Line 2: value of ( )0xφ =  [V] for a 'potential' condition, or value of ( )0E x = [V/m] for a 
'flux' condition 
Line 3: boundary condition at x T= .  Use 'potential' to supply a voltage φ , or 'flux' to supply 
an electric field E 
Line 4: value of ( )x Tφ =  [V] for 'potential' condition, or value of ( )E x T= [V/m] for 'flux' 
condition 
Line 5: text heading (not used) 
Line 6: initial charge density at node 1, 0

1ˆ t
iρ =
=  [C/m3] 

Line 7: initial charge density at node 2, 0
2ˆ t

iρ =
=  [C/m3] 

.

.

.
 

Line 5n + : initial charge density at node n, 0ˆ t
i nρ =
=  [C/m3] 

 
The file 'diffusion.inp' is read only if the problem type is 'fick' or 'mixed'.  Its format is given as 
follows: 

 
'diffusion.inp' 
Line 1: boundary condition at 0x = .  Use 'potential' to supply a constant vacancy 
concentration c , 'flux' to supply a constant vacancy flux Q, or 'special' to apply equation 55. 
Line 2: value of ( )0c x =  [ppm] for a 'potential' condition, value of ( )0Q x = [ppm m/s] for a 
'flux' condition, or value of β  in (55) for 'special' condition 
Line 3: boundary condition at x T= .  Use 'potential' to supply a constant vacancy 
concentration c , 'flux' to supply a constant vacancy flux Q, or 'special' to apply equation 55. 
Line 4: value of ( )c x T=  [ppm] for a 'potential' condition, value of ( )Q x T= [ppm m/s] for a 
'flux' condition, or value of β  in (55) for 'special' condition 
Line 5: flag to apply constraint (59): 'yes' or 'no' 
Line 6: initial vacancy concentration at node 1, 0

1
t
ic =
=  [ppm] 

Line 7: initial vacancy concentration at node 2, 0
2

t
ic =
=  [ppm] 

.

.

.
 

Line 5n + : initial vacancy concentration at node n, 0t
i nc =
=  [ppm] 
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4.3 Output 

Up to four output files are generated, each containing computational results.  The file 'outelec.txt' 
is written for problems of type 'maxwell' or 'mixed', and provides the following: 
 

'outelec.txt' 
At output request times ( )max max max max0, / , 2 / ,..., 1 / ,t t t tt t t n t t n t n t n t t= = = = − = : 

Column 1: node i 
Column 2: time t [s] 
Column 3: position x [m] 
Column 4: electric potential iφ  [V] 
Column 5: electric field iE  [V/m] 
Column 6: electric charge ˆiρ  [C/m3] 

 
The file 'outdiff.txt' is written for problems of type 'fick' or 'mixed', and provides the following: 
 

'outdiff.txt' 
At output request times ( )max max max max0, / , 2 / ,..., 1 / ,t t t tt t t n t t n t n t n t t= = = = − = : 

Column 1: node i 
Column 2: time t [s] 
Column 3: position x [m] 
Column 4: vacancy concentration c [ppm] 
Column 5: concentration rate c  [ppm/s] 
Column 6: vacancy flux Q [ppm m/s] 

 

The file 'earray.txt' contains the electric field data in tabular form for easy generation of 3-D 
mesh plots.  Zeros are returned if the 'elliptic' routine is not called.  The format is as follows: 
 

'earray.txt' 
Rows correspond to node numbers i, while columns correspond to time increments. 
Column 1: x  coordinate of each node i, at maxt t=  
Column 2: electric field iE  [kV/cm] at each node i, at 0t =  
Column 3: electric field iE  [kV/cm] at each node i, at max / tt t n=  
.
.
.
 

Column 2tn + : electric field iE  [kV/cm] at each node i, at maxt t=  
 

The file 'carray.txt' contains the vacancy concentration data in tabular form for easy generation of 
3-D mesh plots.  Zeros are returned if the 'parabolic' routine is not called.  The format is listed as 
follows: 
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'carray.txt' 
Rows correspond to node numbers i, while columns correspond to time increments. 
Column 1: x  coordinate of each node i, at maxt t=  
Column 2:  concentration ic  [ppm] at each node i, at 0t =  
Column 3: concentration ic  [ppm] at each node i, at max / tt t n=  
.
.
.
 

Column 2tn + : concentration ic  [ppm] at each node i, at maxt t=  
 

5. Sample Problem-BST Film  

An example problem is discussed here to demonstrate the software capabilities and input file 
format.  The physical system analyzed here is a thin film of uniform thickness 100 nmT =  
(figure 1).  Isothermal conditions are assumed with 298 Kθ = , a temperature at which undoped 
BST remains cubic in phase for molar concentrations of Sr greater than 0.3 (Tinte et al., 2004).  
Doping with Mg further lowers the Curie point (Cole et al., 2003).   

Requisite material properties are listed in table 1, deemed representative of particular 
composition Ba0.6Sr0.4TiO3.  The dielectric constant Rε  is chosen as representative of the BST 
film systems of interest (Cole et al., 2003), while thermodynamic properties ĉ  and η̂  of the bulk 
substance are used (Todd and Lorenson, 1952).  The vacancy diffusivity d is computed from 

 / /B B RD k ez dkµ θ θ ξ= = , (65) 

where D  is a thermally-activated diffusivity associated with Fick's first law, µ  is the drift 
mobility of ionic charges, and Rξ  is a reference defect concentration.  We assume here, from 
drift mobility data on 100 nm-thick BST films (Zafar et al., 1998), a constant value of 

8 –1 –1 –12(10)  V m sRµξ −= , leading to the value of d reported in table 1.  Parameter α  is estimated 
from consideration of the crystal structure and lattice parameters, while the value of z indicates 
that each oxygen vacancy contributes a charge of magnitude of two free electrons. 

Table 1.  Properties of BST film at 298 K. 

Parameter Value Parameter Value 
Rε  500 d  106.24(10)  J–1 m–1 s–1 

ĉ  100 J mol–1 K–1 α  29 310 m−  
η̂  115 J mol–1 K–1 z  2.0 
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The particular initial-boundary value problem includes the following boundary conditions, 
corresponding to shorted or ground electrodes at the film boundaries, which themselves are 
constrained to remain impenetrable to vacancy flow: 

 ( )0, 0tφ = ,          ( ), 0T tφ = , (66) 

  ( )0, 0Q t = ,            ( ), 0Q T t = . (67) 

Initial conditions are applied as 

 ( ) 6,0 10xχ −=  (68) 

and 
 ( ) 3ˆ ,0 32043 C/mxρ = . (69) 

The spatially-constant value of ( ) 6,0 10xχ −=  corresponds to an initial concentration of 
0 1 ppmc = .  Additionally, vacancy conservation constraint (59) is activated throughout the 

analysis.  The spatial domain is decomposed into 300 segments of equal length 1/ 3 nmx∆ = , 
with a total of 301 nodes.  The time domain is chosen as 0 1 st µ≤ ≤ .   Input files used for the 
computation are as follows: 

'parameters.inp' 
mixed 
301 
1.0d-6 
1.0d-12 
100000 
1.0d-7 
298 
500 
0.0 
6.24d10 
6.24d10 
1.0d23 
1.0d-6 
2.0 
115.0 
100.0 
 
'electrostatic.inp' 
potential 
0.0 
potential 
0.0 
initial_charge_distribution 
32043.0 
32043.0 
.
.
.
 

32043.0 
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'diffusion.inp' 
flux 
0.0 
flux 
0.0 
yes 
1.0 
1.0 
.
.
.
 

1.0 
1.0 
 
The solution is shown in figure 4, with concentration and electric field mesh plots generated 
from output files 'carray.txt' and 'earray.txt', respectively.  Although a steady-state concentration 
is not reached in the short duration of this transient simulation, a buildup of vacancies at the 
boundaries 0x =  and 100 nmx T= =  occurs, as the charges migrate from their initially uniform 
distribution towards the boundaries where the voltage 0φ = .  Vacancy migration has a negligible 
effect on the local electric field E, however, which is initially linear due to the constant initial 
charge distribution and exhibits an average value of zero.  
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Figure 4.  Vacancy concentration and electric field: 0 1 ppmc = , 0V = . 

Vacancy concentration distributions can be explained upon further examination of chemical 
potential µ  of equation 17.  The term ρ ψ ξ∂ ∂  establishes an energetic penalty for large 
concentrations and forces the vacancies to diffuse towards a uniform state.  The term ezφ  
accounts for electrostatic interactions due to charges of the vacancies, and leads to their 
migration towards locations where the potential φ  is small.  The final distribution of vacancies is 
thus established from a balance of the contributions of these two terms in the chemical potential.   
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6. Conclusions 

A continuum model for elastic dielectric semiconductors with mobile charged point vacancies 
has been presented.  The complete 3-D theoretical framework includes the physics of continuum 
elasticity, electrostatics, mass diffusion, and charged defect kinetics.   

A restricted version of the theory has been implemented in a finite difference code allowing 
solution of the elliptic equations of electrostatics of dielectrics coupled with the transient 
parabolic equation of charged diffusion.  The numerical analysis is at present limited to one 
spatial dimension.   

User documentation has been provided for the computer implementation.  Given in the report are 
descriptions of the source code structure, user instructions, and representative input files for 
analysis of BST thin films containing charged oxygen vacancies.  The source code has been 
included in the appendix. 
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      program semiconductor_1D 
c 
      implicit none 
c 
      character(len=50) problem_type 
c 
      integer i,j,k,l,m,n 
      integer nmax        !max # of nodes in grid 
      integer nsteps      !max * of timesteps 
      integer nout,kount,count     !# steps between output requests 
      integer ke,kc        !output flags 
c 
      real*8 t,tmax,dt     !time,max time, delta-time 
      real*8 p1,p2         !permittivity constants  
      real*8 d1,d2         !bulk diffusivity constants 
      real*8 z      !valence per vacancy 
      real*8 temp     !temperature (K) 
      real*8 alpha         !convert to per m^3 from ppm 
      real*8 beta          !convert to vol. fraction from ppm 
      real*8 L0,LC        !initial and current domain length (m) 
      real*8 Ldot     !velocity of domain (m/s) 
      real*8 dx       !grid spacing (m) 
      real*8 x            !coordinate (nm) 
      real*8 pfree        !permittivity of free space (C/Vm)  
      real*8 kb            !Boltzmann's constant (J/K) 
      real*8 e           !charge of an electron (C) 
      real*8 s     !specific entropy (J/molK) 
      real*8 cp            !specific heat (J/molK) 
      real*8 cave0        !initial avg concentration (ppm) 
      real*8,pointer,dimension(:)::dconc   !cumulative change in conc (ppm) 
      real*8,pointer,dimension(:)::dconst    !relative dielectric constant 
      real*8,pointer,dimension(:)::efield    !electric field (V/m) 
      real*8,pointer,dimension(:)::potential    !electric potential (V) 
      real*8,pointer,dimension(:)::charge    !electric charge (C) 
      real*8,pointer,dimension(:,:)::earray   !electric field output matrix 
      real*8,pointer,dimension(:,:)::carray   !concentration output matrix 
c  
 500  format(12e14.5) 
c  
      pfree = 8.854187817d-12 
      kb = 1.3806505d-23 
      e = 1.60217653d-19     
c 
      open(unit=1,file='parameters.inp',status='unknown') 
      read(1,*)problem_type 
      read(1,*)nmax 
      read(1,*)tmax 
      read(1,*)dt 
      read(1,*)nout 
      read(1,*)L0 
      read(1,*)temp 
      read(1,*)p1 
      read(1,*)p2 
      read(1,*)d1 
      read(1,*)d2 
      read(1,*)alpha 
      read(1,*)beta 
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      read(1,*)z 
      read(1,*)s 
      read(1,*)cp 
      close(1) 
c       
      print*,'Problem ',problem_type 
      print*,'Domain initial length ',L0 
      print*,'Number of nodes ',nmax 
      print*,'Max time and delta_t ',tmax,dt 
      print*,'Bulk diffusion constants ',d1,d2 
      print*,'Bulk dielectric constants ',p1,p2 
      print*,'Valence per vacancy ',z 
      print*,'Temperature ',temp 
      print*,'Entropy ',s 
      print*,'Specific heat',cp 
      print*,'Conversion ppm to per cubic meter ',alpha 
      print*,'Conversion ppm to volume fraction ',beta 
c 
      nsteps= tmax/dt 
      nsteps= nsteps/nout+1 
      print*,'Number of output steps ',nsteps 
c       
      allocate(dconc(nmax)) 
      allocate(dconst(nmax)) 
      allocate(efield(nmax)) 
      allocate(potential(nmax)) 
      allocate(charge(nmax)) 
      allocate(earray(nmax,nsteps)) 
      allocate(carray(nmax,nsteps)) 
c       
      t=0.0 
      do i=1,nmax 
      dconc(i)=0.0 
 dconst(i)=p1 
 efield(i)=0.0 
 potential(i)=0.0 
 charge(i)=0.0 
      end do 
      do i=1,nmax 
      do j=1,nsteps 
      earray(i,j)=0.0 
      carray(i,j)=0.0 
      end do 
      end do 
       
      Ldot=0.0 
      LC=L0 
      kount=nout 
      count=nout 
      ke=0 
      kc=0 
c       
 100  if(t.le.tmax) then 
c  
      dx=LC/(nmax-1.) 
c 
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      if(problem_type.eq.'maxwell')then 
      call elliptic(dconc,dx,temp,p1,p2,z,e,charge,dt,pfree, 
     1              alpha,t,dconst,nmax,efield,potential, 
     2              nout,count,tmax,earray,nsteps,ke) 
      end if 
c       
      if(problem_type.eq.'fick')then 
      call parabolic(dconc,dconst,d1,d2,temp,nmax,dx,Ldot,s,cp, 
     1 beta,t,dt,z,e,kb,pfree,alpha,efield,charge,potential,tmax, 
     2 nout,kount,cave0,carray,nsteps,kc) 
      end if 
c 
      if(problem_type.eq.'mixed')then 
      call elliptic(dconc,dx,temp,p1,p2,z,e,charge,dt,pfree, 
     1              alpha,t,dconst,nmax,efield,potential, 
     2              nout,count,tmax,earray,nsteps,ke) 
c 
      call parabolic(dconc,dconst,d1,d2,temp,nmax,dx,Ldot,s,cp, 
     1 beta,t,dt,z,e,kb,pfree,alpha,efield,charge,potential,tmax, 
     2 nout,kount,cave0,carray,nsteps,kc) 
      end if 
c 
      t = t + dt 
      LC = LC+(Ldot*dt) 
      go to 100 
      end if  
c      
      open(unit=5,file='earray.txt',status='unknown') 
      open(unit=6,file='carray.txt',status='unknown') 
      x=0.0 
      do i=1,nmax 
      write(5,500)x,(earray(i,j),j=1,nsteps) 
      write(6,500)x,(carray(i,j),j=1,nsteps) 
      x=x+dx*1.0d9 
      end do  
      close(5) 
      close(6) 
c       
      deallocate(dconc) 
      deallocate(dconst) 
      deallocate(efield) 
      deallocate(potential) 
      deallocate(charge) 
      deallocate(earray) 
      deallocate(carray) 
c       
      end program semiconductor_1D 
c 
c################################################################### 
c 
      subroutine elliptic(dconc,dx,temp,p1,p2,z,e,charge,dt, 
     1               pfree,alpha,t,dconst,nmax,efield,potential, 
     2               nout,count,tmax,earray,nsteps,ke) 
c       
      implicit none 
c 
      character(len=50)bcleft,bcright,dummychar 
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      integer i,j,k,l,m,n 
      integer nmax,adim,nout,count,nsteps,ke  
      integer,pointer,dimension(:)::index 
      real*8 dx,temp,p1,p2,z,e,pfree,alpha,t,dt,tmax,tout 
      real*8 valleft,valright 
      real*8 dconc(nmax) 
      real*8 dconst(nmax) 
      real*8 charge0(nmax) 
      real*8 charge(nmax) 
      real*8 potential(nmax) 
      real*8 efield(nmax) 
      real*8 x(nmax) 
      real*8 earray(nmax,nsteps) 
      real*8 factor,energy,d 
      real*8,pointer,dimension(:,:)::amatrix   
      real*8,pointer,dimension(:)::bvector 
      real*8,pointer,dimension(:)::xvector 
 200  format(i6,5e14.5)       
c           
      open(unit=2,file='electrostatic.inp',status='unknown') 
      read(2,*)bcleft 
      read(2,*)valleft 
      read(2,*)bcright 
      read(2,*)valright 
      read(2,*)dummychar 
      do i=1,nmax 
       read(2,*)charge0(i) 
      end do 
      close(2) 
c 
      adim=nmax 
c       
      if(bcleft.eq.'potential')then 
       adim=adim-1 
      end if 
c       
      if(bcright.eq.'potential')then 
       adim=adim-1 
      end if  
c 
      allocate(amatrix(adim,adim)) 
      allocate(bvector(adim)) 
      allocate(xvector(adim)) 
      allocate(index(adim))   
c 
      do i=1,nmax 
      charge(i)=charge0(i)+e*z*dconc(i)*alpha 
 x(i)=dfloat(i-1)*dx 
      end do 
c  
      do i=1,adim 
      do j=1,adim 
 amatrix(i,j)=0.0       
      end do 
      amatrix(i,i)=-2.0 
 k=i+1 
 m=i-1 



 25

 if(i.lt.adim)amatrix(i,k)=1.0 
 if(i.gt.1)amatrix(i,m)=1.0 
      end do 
c 
      factor=-dx*dx/pfree 
      do i=1,adim 
      j=i 
 if(bcleft.eq.'potential')j=j+1 
 bvector(i)=charge(j)*factor/dconst(j) 
      end do 
c 
      if(bcleft.eq.'potential') bvector(1)=bvector(1)-valleft 
c       
      if(bcright.eq.'potential')then 
       bvector(adim)=bvector(adim)-valright 
      end if 
c       
      if(bcleft.eq.'flux') then 
      bvector(1)=bvector(1)-2.*valleft*dx 
      amatrix(1,2)=2.0 
      end if 
c       
      if(bcright.eq.'flux') then 
      bvector(adim)=bvector(adim)+2.*valright*dx 
      i=adim-1 
      amatrix(adim,i)=2.0 
      end if 
c 
      call LU_Decomp(adim,amatrix,index) 
      call LU_BackSub(adim,amatrix,index,bvector) 
c      
      do i=1,adim 
      j=i 
      if(bcleft.eq.'potential')then 
      potential(1)=valleft 
 j=i+1 
      end if 
      potential(j)=bvector(i) 
      if(bcright.eq.'potential') potential(nmax)=valright 
      end do 
c 
      k=nmax-1 
      do i=2,k 
      j=i-1 
      m=i+1 
      efield(i)=(potential(j)-potential(m))/(2.*dx) 
      end do 
      efield(1)=(potential(1)-potential(2))/dx 
      efield(nmax)=(potential(k)-potential(nmax))/dx 
      if(bcleft.eq.'flux')efield(1)=valleft 
      if(bcright.eq.'flux')efield(nmax)=valright 
c   
      energy=0.0 
      do i=1,k 
      energy=energy+dconst(i)*efield(i)*efield(i)*dx 
      end do 
c       



 26

      d=energy*dx*dfloat(nmax-1)/(potential(1)-potential(nmax))**2. 
c       
      do i=1,nmax 
      dconst(i)=p1/((1.+p2*efield(i)*efield(i))**(0.3333333333)) 
      end do   
c       
      tout=tmax-dt 
c 
      if(count.eq.nout.or.t.gt.tout)then   
      ke=ke+1 
      count=0  
      if(t.lt.dt)then 
      open(unit=3,file='outelec.txt', 
     1     status='unknown') 
      else 
      open(unit=3,file='outelec.txt',position='append', 
     1     status='unknown') 
      end if  
      do i=1,nmax 
      write(3,200)i,t,x(i),potential(i),efield(i),charge(i) 
 earray(i,ke)=efield(i)/1.0d5 
      end do 
      close(3) 
      print*,'Effective dielectric constant ',d 
      end if 
c       
      count=count+1 
c 
      deallocate(amatrix) 
      deallocate(bvector) 
      deallocate(xvector) 
      deallocate(index) 
c       
      return       
      end 
c       
c-################################################################### 
c 
      subroutine parabolic(dconc,dconst,d1,d2,temp,nmax,dx,Ldot,s,cp, 
     1 beta,t,dt,z,e,kb,pfree,alpha,efield,charge,potential,tmax, 
     2 nout,kount,cave0,carray,nsteps,kc) 
c      
      implicit none 
c 
      character(len=50)bcleft,bcright,constraint 
      integer i,j,k,l,m,n 
      integer nmax,nout,kount,nsteps,kc 
      real*8 dconc(nmax) 
      real*8 dconst(nmax) 
      real*8 efield(nmax),charge(nmax),potential(nmax) 
      real*8 d1,d2,temp,dx,t,dt,z,e,kb,pfree,beta 
      real*8 alpha,Ldot,s,cp,tmax,tout 
      real*8 valleft,valright 
      real*8 conc0(nmax) 
      real*8 conc(nmax) 
      real*8 cdot(nmax),gradc(nmax) 
      real*8 diff1(nmax),diff2(nmax),q(nmax),x(nmax) 
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      real*8 denom,phi,dphi 
      real*8 c,cdotmax,cdottemp,cave,cave0,L0,LC 
      real*8 test,scale 
      real*8 carray(nmax,nsteps) 
 300  format(i6,5e14.5)  
c 
      open(unit=4,file='diffusion.inp',status='unknown') 
      read(4,*)bcleft 
      read(4,*)valleft 
      read(4,*)bcright 
      read(4,*)valright 
      read(4,*)constraint 
      do i=1,nmax 
      read(4,*)conc0(i) 
      end do 
      close(4) 
c   
      if(t.eq.0.0)then 
      cave0=0.0 
      L0=0.0 
      do i=1,nmax 
 cave0=cave0+dx*conc0(i) 
 L0=L0+dx 
      end do 
      cave0=cave0/L0 
      end if 
c 
      test = 1./6.*dx*dx/(d1*kb*temp) 
c      if(dt.gt.test)print*,'Warning: dt may be unstable!',test 
c       
      do i=1,nmax 
      x(i)=dfloat(i-1)*dx 
      conc(i)=conc0(i)+dconc(i) 
      c=conc(i) 
 call chem_potential(c,temp,kb,alpha,s,cp,phi,dphi) 
      diff1(i)=-d1*dphi 
 diff2(i)=d2*e*z*efield(i) 
      end do 
c       
      k=nmax-1 
      do i=2,k 
      m=i+1 
 n=i-1 
  gradc(i)=(diff1(m)-diff1(n))/(2.*dx)  
 q(i)= gradc(i)+diff2(i) 
      end do  
c       
      if(bcleft.eq.'potential')then 
      gradc(1)=(-3.*diff1(1)+4.*diff1(2)-diff1(3))/(2.*dx) 
      q(1)= gradc(1)+diff2(1) 
      end if 
c 
      if(bcright.eq.'potential')then 
      i=nmax-1 
      j=nmax-2 
      gradc(nmax)=(3.*diff1(nmax)-4.*diff1(i)+diff1(j))/(2.*dx) 
      q(nmax)= gradc(nmax)+diff2(nmax) 
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      end if       
c       
      if(bcleft.eq.'flux')q(1)=valleft 
      if(bcright.eq.'flux')q(nmax)=valright 
c       
      if(bcleft.eq.'special')then 
      c=conc(1) 
      call chem_potential(c,temp,kb,alpha,s,cp,phi,dphi) 
        q(1)=valleft/(1.-conc(1)*beta)* 
     1  (phi+potential(1)*charge(1)+0.5*efield(1)*efield(1) 
     2   *dconst(1)*pfree+(1./beta-conc(1))*dphi/beta+e*z*potential(1)* 
     3  (1.-conc(nmax)*beta)) 
      end if 
c          
      if(bcright.eq.'special') then 
      c=conc(nmax) 
      call chem_potential(c,temp,kb,alpha,s,cp,phi,dphi) 
         q(nmax)=valright/(1.-conc(nmax)*beta)*(phi+potential(nmax)* 
     1  charge(nmax)+0.5*efield(nmax)*efield(nmax)*dconst(nmax)*pfree 
     2  +(1./beta-conc(nmax))*dphi/beta+e*z*potential(nmax)* 
     3  (1.-conc(nmax)*beta)) 
      end if 
c      
      k=nmax-1 
      do i=2,k 
      m=i+1 
 n=i-1 
  cdot(i)=-(q(m)-q(n))/(2.*dx)  
      end do  
c 
      cdot(1)=-(-3.*q(1)+4.*q(2)-q(3))/(2.*dx) 
      i=nmax-1 
      j=nmax-2 
      cdot(nmax)=-(3.*q(nmax)-4.*q(i)+q(j))/(2.*dx)      
c      
      if(bcleft.eq.'potential')cdot(1)=0.0 
      if(bcright.eq.'potential')cdot(nmax)=0.0  
c       
      do i=1,nmax 
      cdottemp=cdot(i) 
      conc(i)=conc(i)+cdot(i)*dt 
      if (conc(i).lt.1.d-15)cdot(i)=0.0 
      conc(i)=conc(i)-cdottemp*dt 
      end do 
c      
      if (constraint.eq.'yes')then 
      cave=0.0 
 LC=0.0 
      do i=1,nmax 
 dconc(i)=dconc(i)+cdot(i)*dt 
 cave=cave+(conc0(i)+dconc(i))*dx 
 LC=LC+dx 
 end do 
      cave=cave/LC 
      scale=cave0/cave 
 do i=1,nmax 
 dconc(i)=dconc(i)*scale-conc0(i)*(1.-scale) 
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 end do 
      else 
      do i=1,nmax 
      dconc(i)=dconc(i)+cdot(i)*dt 
 end do 
      end if 
c       
      cdotmax = 0.0 
      cave = 0.0 
      n=0 
      do i=1,nmax 
      if(abs(cdot(i)).gt.cdotmax)then 
      cdotmax=abs(cdot(i)) 
      n=i 
      end if 
      cave = cave + conc(i) 
      end do 
      cave = cave/dfloat(nmax) 
c 
      if(bcright.eq.'special'.or.bcleft.eq.'special')then 
      Ldot=q(1)/(1.-conc(1)*beta)+q(nmax)/(1.-conc(nmax)*beta) 
      else 
      Ldot=0.0 
      endif 
c 
      tout = tmax-dt 
c 
      if(kount.eq.nout.or.t.gt.tout)then   
      kount=0  
      kc=kc+1 
      if(t.lt.dt) then    
      open(unit=4,file='outdiff.txt', 
     1     status='unknown') 
      else 
      open(unit=4,file='outdiff.txt',position='append', 
     1     status='unknown') 
      end if 
      print*,'Time',t,'C average',cave 
      print*,'Max conc. rate', cdotmax, n 
      if(constraint.eq.'yes')print*,'Constrained rate:',test 
      if(bcright.eq.'special'.or.bcleft.eq.'special')then 
      print*,'Ldot',Ldot 
      end if 
      do i=1,nmax 
      write(4,300)i,t,x(i),conc(i),cdot(i),q(i) 
 carray(i,kc)=conc(i) 
      end do 
      close(4)  
      end if 
c       
      kount=kount+1 
c          
      return       
      end     
c 
c-#################################################################### 
c 
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      subroutine chem_potential(c,temp,kb,alpha,s,cp,phi,dphi) 
c       
      implicit none 
c 
      real*8 c,temp,kb,alpha,cp,s,phi,dphi 
      real*8 gtotal 
      real*8 xv 
      real*8 avagadro,r 
      real*8 nt 
c 
      avagadro = 6.02214199447d23 
      r = 8.314472 
c       
      nt = alpha*1.0d6             
      xv = c*alpha/nt 
c 
      gtotal = temp*(cp-s+r*log(xv)) 
c       
      phi = nt/avagadro*gtotal     
c     dphi = kb*temp*c 
      dphi = kb*temp*log(c)      
c 
      return 
      end 
c 
c-#################################################################### 
c 
      subroutine LU_Decomp(n,a,index) 
c 
      implicit double precision (a-h,o-z) 
      dimension a(n,n), index(n), v(n) 
c 
      tiny = 1.0e-20 
c 
      do i = 1,n 
      a_max = 0.0 
      do j = 1,n 
      a_max = max(a_max,abs(a(i,j))) 
      end do !j 
      v(i) = 1.0 / a_max 
      end do !i 
c 
      do j = 1,n 
c 
      do i = 1,j-1 
      sum = a(i,j) 
      do k = 1,i-1 
      sum = sum - a(i,k) * a(k,j) 
      end do 
      a(i,j) = sum 
      end do 
c 
      a_max = 0.0 
      do i = j,n 
      sum = a(i,j) 
      do k = 1,j-1 
      sum = sum - a(i,k) * a(k,j) 
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      end do 
      a(i,j) = sum 
      dummy = v(i) * abs(sum) 
      if ( dummy .gt. a_max ) then 
      imax = i 
      a_max = dummy 
      end if 
      end do 
c 
      if ( j .ne. imax ) then 
      do k = 1,n 
      dummy = a(imax,k) 
      a(imax,k) = a(j,k) 
      a(j,k) = dummy 
      end do 
      v(imax) = v(j) 
      end if 
      index(j) = imax 
c 
      if ( a(j,j) .eq. 0.0 ) a(j,j) = tiny 
      if ( j .ne. n ) then 
      dummy = 1.0 / a(j,j) 
      do i = j+1,n 
      a(i,j) = a(i,j) * dummy 
      end do 
      end if 
      end do !j 
c 
      return 
      end 
c 
c-################################################################## 
c 
      subroutine LU_BackSub(n,a,index,b) 
c 
      implicit double precision (a-h,o-z) 
      dimension a(n,n), index(n), b(n) 
c 
      ii = 0 
c 
      do i = 1,n 
      m = index(i) 
      sum = b(m) 
      b(m) = b(i) 
      if ( ii .ne. 0 ) then 
      do j = ii,i-1 
      sum = sum - a(i,j) * b(j) 
      end do 
      else if ( sum .ne. 0.0 ) then 
      ii = i 
      end if 
      b(i) = sum 
      end do 
c 
      do i = n,1,-1 
      sum = b(i) 
      if ( i .lt. n ) then 
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      do j = i+1,n 
      sum = sum - a(i,j) * b(j) 
      end do 
      end if 
      b(i) = sum / a(i,i) 
      end do 
c 
      return 
      end 
c      
c==================================================================== 
 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 33

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & 
  ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 

 
 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  AMSRD ARL CI OK TP (BLDG 4600) 
 
 
 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 34

 38 DIR USARL 
  AMSRD ARL CI HC 
   P CHUNG 
   R NAMBURU 
   D GROVE 
  AMSRD ARL WM 
   J MCCAULEY 
   T WRIGHT 
  AMSRD ARL WM TA 
   S SCHOENFELD 
  AMSRD ARL WM TC 
   M FERMAN COKER 
   R COATES 
  AMSRD ARL WM TD 
   S BILYK 
   T BJERKE 
   D CASEM 
   J CLAYTON (5 CPS) 
   T CLINE 
   D DANDEKAR 
   W EDMANSON 
   M GREENFIELD 
   C GUNNARSSON 
   Y HUANG 
   K IYER 
   R KRAFT 
   B LOVE 
   S MCNEILL 
   H MEYER 
   R MUDD 
   M RAFTENBERG 
   E RAPACKI 
   M SCHEIDLER 
   S SEGLETES 
   T WEERASOORIYA 
  AMSRD ARL WM MA 
   M COLE 
   J ANDZELM 
   M VANLANDINGHAM 
   W NOTHWANG 
  AMSRD ARL WM MD 
   G GAZONAS 
 
 
 
 

 


